BIORESOURCE TECHNOLOGY (ChBC-82) B.Tech. 8TH Semester

S. No.	Questions											COs
1.	The lignin contents and higher heating values (HHV) for some of the biomass											
	samples are given in the following Table:											
	Biomass	Lig	Lignin (L)		HHV		HHV		HHV	Difference		
	Samples	Samples		easured	(v	vt.%) ^{ab}	(wt.%) ^{dar}		(Calculat	ed)	
	Corn Stover		()	(wt.%) ²³		17.8		(MJ/Kg) 18.5		$\frac{(MJ/Kg)}{17.7}$	-0.8	-
	Corncob			15.0		17.0		17.2		17.8	+0.6	-
	Sunflower Shell			17.0		18.0		18.8		18.0	-0.8	-
	Beech Wood			21.9		19.2 19.5		19.5		18.4	-1.1	-
	Ailanthus Wood			26.2		19.0	19.4			18.9	-0.5	
	Hazelnut Shell			42.5		20.2		20.5		20.1	-0.4	-
	Wood Bark			43.8		20.5 20.8			20.1	-0.7		
	Olive Husk			48.4		20.9		21.6		21.0	-0.6	-
	Walnut Sh		52.3		21.6		22.2		21.4	-0.8		
	With the help of the above data, develop a mathematical model which correlates											
	higher heating values and the lignin contents.											
2.	After finding the mathematical correlation between HHV and L in question (1), CO											
	determine the square of correlation coefficient (\mathbb{R}^2) and also calculate percentage of											
	average error, and what is the root mean square error (RMSE)?											
	$1 \frac{1}{1} \frac{n}{2}$											
	Note: The correlation: RMSE = $\sqrt{\frac{1}{n}} \sum (\text{Observed value} - \text{Predicted value})^2 \text{ may}$											
	$\bigvee n \xrightarrow{i=1}$											
2	be used.											
3.	The proximate and ultimate analyses results of some of the bioresources are given C											
	In the Ta	III UIE 1 ADIE DEIOW: Biomass Provimate analysis Uiltimate analysis ^{daf} Deferences										
	Diomass	M	VM db	M db FC db /		C	ч	H N S		0	References	-
	Dina ahina	7.6	72.4	21.6	<u>л</u>	52.8	6.1	0.5	0.0	0 40.5	Maria (2007)	-
	r lile chips	7.0	95.6	10.2	0	51.6	0.1	0.5	0.0	9 40.3	$M_{\rm H}^{\rm in} = (1007)$	-
	Poplar	6.8	85.6	12.3	2.1	51.6	6.1	0.6	0.0	2 41.7	Miles et al. (1995)	-
	Sawdust	34.9	84.6	14.3	1.1	49.8	6	0.5	0.0	2 43.7	Tillman (2000)	-
	Willow 10.1 82.5 15.9 1.6 49.8 6.1 0.6 0.06 43.4 Moilanen (2006)											
	db: Dry bas	sis daf: D	ry, ash-fi	ee basis, N	1:Moist	ure, VM:	Volatile	Matter,	A: As	sh, FC:Fixe	d Carbon	
	Using the correlations: HHV (MJ/kg) = $(0.3536 \times FC + 0.1559 \times VM - 0.0078 \times Ash)$											
	and $\Pi \Pi V(KJ/Kg) = (5.33 \times C - 252 \times C - 2230 \times \Pi + 51.2 \times C \times \Pi + 151 \times IN + 20000)$											
	present in the bioresources by using the correlation developed for the data in											
	guestion (1)											
4	Estimate the values of HHVs for the bioresources given in question (1) by using the											
	correlations of question (3) and repeat for finding the mathematical model. Note											
	referred data in the literature may be used for proximate and ultimate analyses.											
CO1:	Fundamental understanding of the bioresources and its applications for attainment of social											
	objectives (energy, environment, product, sustainability).											
CO2 :	Acquire knowledge with respect to the properties of the bioresources and the conversion											
CO3·	Exhibiting	ies.	dag of th	a sustam	a usad f	for biore	ources	and his	raco	tree toobs		4
CO4:	Understanding about analysis of data and their applications in design of the systems and											1
	developm	ent of the	e biopro	cess.	autu d		արրո	cuitons			and systems and	